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The instanton theory newly implemented by two of the authors (G.V.M. and H.N.) is applied to hydrogen
tunneling transfer in a vinyl radical. The converged instanton trajectory is found on the CCSD(T)/aug-cc-
pVTZ level of an ab initio potential energy surface. The calculated ground-state energy splitting agrees with
the recent high-resolution experimental data within 3% of discrepancy. The semiclassical wave function is
used to estimate the splitting of the principal rotational constants of the radical.

I. Introduction

The vinyl radical is an important intermediate in combustion
chemistry, attracting much interest for many years.1,2 Intensive
works on its structure have been carried out by both
theoreticians3-7 and experimentalists.8-15 In particular, Fes-
senden and Schuller observed a pair of doublets ascribed to an
R proton in the CH group and twoâ protons in the CH2 group.10

They concluded that the absence of centralRâ andâR lines is
due to the fast interconversion of the C-H bond between two
minima and estimated the corresponding potential barrier height
to be about 2 kcal/mol. Kanamori et al. reported the results
obtained by the IR diode laser kinetic spectroscopy.14 They
observed the splitting of an absorption band around 900 cm-1

assigned to the out-of-plane CH2 wagging motion. Although
the tunneling splitting in the ground state∆0 cannot be directly
estimated from their data, the authors derived the potential
barrier height 1200 cm-1 from the analysis of rotational
constants. Quite recently, Tanaka et al.15 investigated this radical
by millimeter-wave spectroscopy and reported a set of precise
molecular constants. Among them, the ground-state tunneling
splitting was found to be∆0 ) 16 272 MHz () 0.54 cm-1).
Using a one-dimensional (1D) double minimum model, they
also estimated the barrier height as 1580 cm-1 as well as the
tunneling splitting of the rotational constant.

The present work is addressed to a theoretical study of
intramolecular tunneling hydrogen transfer in the vinyl radical.
In addition to the tunneling splitting by the recently developed
instanton theory,16-19 we estimate the splitting of rotational
constants with the use of the semiclassical wave function. Our
method enables us to incorporate high-level ab initio quantum
chemical calculations into the theory, which provide an effective
practical recipe for studying tunneling processes in polyatomic
systems. The final accuracy of the theoretical estimate mainly
depends on the quality of electronic structure calculations. In
the previous benchmark calculation of the malonaldehyde
molecule,18 the fully converged semiclassical result has been
obtained at the CCSD/(aug-)cc-pVDZ computational level,20,21

where the aug-cc-pVDZ set is used for oxygen atoms and the
transferred hydrogen atom and the cc-pVDZ set for the other
atoms. It was concluded, however, that the main origin of about
20% discrepancy in comparison with the experiment was due
to the insufficient accuracy of the potential energy surface. By
introducing the CCSD/(aug-)cc-pVTZ correction along the
instanton tunneling path, we could reproduce the experiment
within a few percent of accuracy. Accurate implementation of
the instanton method requires the Hessian of the potential
function to be evaluated. In the case of malonaldehyde, such
potential data are not available at the highest CCSD/aug-cc-
pVTZ level because of too much required CPU time and the
accuracy of the theoretical estimate is not fully guaranteed. On
the contrary, the vinyl radical supplies a good example that the
full-scale semiclassical calculations at such a level can be
accomplished.

This paper is organized as follows. In the next section, we
slightly extend our instanton theory so that we can evaluate other
physical quantities. We derive a simple formula to estimate the
splitting of the expectation value of an arbitrary function of
internal coordinates for the two lowest states. In section III, we
apply our theory to the splitting of energy levels and principal
rotational constants in the vinyl radical. Concluding remarks
are presented in section IV.

II. Instanton Theory

In this section, we summarize the main equations of the
instanton theory.16,19We also show that the semiclassical wave
function enables us to estimate the splitting of an arbitrary
physical quantity. In particular, we derive a practical formula
for the splitting of rotational constants. The general Hamiltonian
for a nonrotating (J ) 0) Na atomic molecule reads

whereq ) q1, q2, ..., qN areN ) 3Na - 6 internal coordinates,
gij(q) is the Riemannian metric tensor for the internal motion,
and G is the determinant of the full metric tensor for both
internal and rotational degrees of freedom. It is assumed that
the potential functionV(q) has two equivalent symmetric minima
located atqm andq̃m. Generally, the tunneling splitting of energy
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levels in a double well potential can be evaluated by means of
the Herring formula22 as a “flux” ∼∫ Ψ∇Ψ dσ through the
symmetric dividing surface separating the two potential wells.
In the instanton theory, the corresponding wave function is
constructed in the semiclassical approximation as

whereW0 and W1 are found from the Hamilton-Jacobi (HJ)
and transport equations, respectively. In the present case, the
HJ equation reads16

whereH(q,p) ) (1/2)gij(q)pipj - V(q) is the classical Hamilto-
nian with the upside down potential. Equation 3 can generally
be solved by the method of characteristics. This givesW0(q) in
the form of the action integral along the classical trajectories
(characteristics) for the HamiltonianH(q,p). In particular, the
family of characteristics originating fromqm or q̃m gives the
semiclassical wave function localized in the corresponding
potential well. The calculation of the tunneling splitting is very
much simplified due to the symmetry of the problem. It can be
shown that within the limits of semiclassical accuracy the main
contribution to the Herring formula comes from the vicinity of
the so-called instanton trajectoryq0(τ) which is nothing but the
characteristic connecting the two potential minimaqm andq̃m.16

This trajectory is generally defined up to an arbitrary time shift
and can always be chosen to satisfy the conditions thatq0(-∞)
) qm, q0(∞) ) q̃m, andq0(τ ) 0) is the middle point of the
instanton. Then, for the semiclassical wave function localized
aroundqm, the solution of the HJ equation eq 3 in the vicinity
of q0(τ) is given by19

Here,∆q ≡ q - q0(τ), p0(τ) is the conjugate momentum along
the instanton trajectory, and the symmetric matrixÃ(τ) satisfies
the equation16

where Hqq, Hqp, ..., stand for the matrixes of the corresponding
second derivatives of the classical Hamiltonian taken along
q0(τ). Equation 5 is supplemented by the initial condition
(d/dτ)A(-∞) ) 0 which completely definesÃ(τ). The timeτ
in eq 4 is understood as a function of coordinatesτ(q) according
to the relation19

The second termW1(q) in the semiclassical expansion, eq 2,
is easily found from the transport equation. In particular, for
the ground state, it is given by16

whereTrA ≡ Ai
i ) gijAij, the matrixA differs from Ã by the

curvature termAij ≡ Ãij - p0kΓij
k, and Γij

k are the Christoffel
symbols. Equations 2, 4, and 7 completely determine the
semiclassical wave function, and the calculation of the tunneling

splitting by the Herring formula is straightforward. We will show
below that the explicit form of the wave function can also be
used to estimate the tunneling splitting of rotational constants.
Further details of the theory can be found in refs 16 and 19,
and here we just collect the main results.

For the ground-state tunneling splitting, the general formula
reads

whereS0 is the classical action along the instanton trajectory

and

where indices m and b indicate that the corresponding quantities
are taken at the potential minimumqm and the barrierqb ≡
q(0), respectively.

Analysis of the excited state is more complicated, since the
nodal structure of the wave function must be properly taken
into account. It has been shown recently that for low vibrational
excitations the invariant instanton theory can still be con-
structed.19 In general, multidimensional systems, one can
separate the excitation of the normal mode along the instanton
trajectory (longitudinal mode) in the region of the potential
minimum from the excitation of all the otherN - 1 transversal
modes. The former is especially simple, since the correction to
the semiclassical solution due to the excitation is shown to be
independent of all the transversal modes. Thus, the problem
becomes essentially 1D, and the tunneling splitting for the first
excited states is given by the simple formula19

whereω is the corresponding longitudinal normal frequency
andV(τ) ≡ V(q0(τ)).

The case of transversal excitations is more difficult. In
addition to eq 5, one has to solve a complementary equation
which describes the interaction between all the transversal modes
and has the form

whereθ(τ) ) ∑ijUiUjA ij and, as before, all the quantities are
taken on the instanton trajectory. The upper and lower indices
indicate the contra- and co-variant vectors related by the metric
tensorgij in the usual way. The vectorU(τ) characterizes the
local direction of the node of semiclassical wave function. At
the potential minimum,U(-∞) coincides with one of the normal
modes whileθ(-∞) is the corresponding normal frequency.N
- 1 possible initial conditions for the transversal normal modes
generatesN - 1 independent solutions of eq 12 which describe
the possible types of transversal excitation. For each normal
modeγ, the tunneling splitting of the first excited state reads

∆0 ) B exp(-
S0

p
- S1) (8)

S1 ) ∫-∞

0
dτ [Tr(A - Am)] (9)

B ) x4pGb detAm

πGm detAb

(p0
Tgp0)b

x(p0
TA-1p0)b

(10)

∆n)1 ) ∆n)0

4V(0)
pω

exp[2∫-∞

0
dτ (ω - 1

2V
dV
dτ)] (11)

U̇k ) θ(τ)Uk - [gijÃ ik + ∂kg
ijp0i]Uj (12)

∆γ ) ∆0ωγ(UT[A-1 +
(A-1p0)X(p0

TA-1)

(p0
TA-1p0) ] U)

b

exp(-∆S1)

(13)

Ψ ) exp(-
W0

p
- W1) (2)

H(q,
∂W0

∂q ) ) 0 (3)

W0(q) ) ∫-∞

τ
p0(τ′)q3 0(τ′) dτ′ + 1

2
∆qÃ(τ)∆q + o((∆q2))

(4)

d
dτ

Ã ) -Hqq - HqpÃ - ÃHpq - ÃHppÃ (5)

(qi - q0
i (τ))p0i(τ) ) 0 (6)

W1(q) ) 1
2∫-∞

τ
(Tr(A(τ′) - Am)) dτ′ (7)
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whereωγ is the normal-mode frequency (excitation energy),
and the extra exponential factor is given by

In the rest of this section, we discuss a more general problem
of the semiclassical estimation of the expectation value of the
physical quantity. For simplicity, we restrict our attention to
the ground state with the wave function given explicitly by eqs
2, 4, and 7. The calculation of the matrix element generally
requires the global wave function, while eq 4 gives only local
behavior in close vicinity of the instanton trajectory. However,
since our aim here is to estimate the difference between the
expectation values of the two states of opposite symmetry in
the tunneling doublet, the instanton theory can be used.

We consider the expectation values

whereGkl(q) (k,l ) 1, 2, 3) is the rotational metric tensor, and
Ψ+(q) and Ψ-(q) are the wave functions for symmetric and
antisymmetric states in the ground-state doublet, respectively.

We introduce the functionsΨ1,2 ) (Ψ+ ( Ψ-)/(2)1/2 localized
in each potential well and rewrite eq 15 in the form

with

and

The rotational constants are defined as the eigenvalues ofB(.
By treating the second exponentially small term in eq 16 as a
perturbation, we obtain the tunneling splitting of the rotational
constants in the form

whereXk (k ) 1, 2, 3) are the eigenvectors ofM . Within the
limits of semiclassical accuracy, the latter must be taken in
zeroth-order approximation, that is,M ) G(qm)/2. The problem
therefore is reduced to calculating the exponentially small term,
eq 18.

Let us consider a matrix element

where f(q) is an arbitrary function of coordinates which is
assumed to possess appropriate symmetry. In the semiclassical
approximation, the main contribution to the matrix element
comes from the characteristic which is common for the two
families of classical trajectories associated with the functions
Ψ1 and Ψ2. This is nothing but the instanton trajectory, and
the matrix element can be estimated from eqs 2, 4, and 7. The
wave functionΨ2 ) exp(-W0′/p - W1′) is the semiclassical
wave function localized inq̃m and can be constructed in the
same way as before. The principal exponentW0′, for instance,

is explicitly given by

whereÃ′ satisfies the same as eq 5 but with the initial condition
specified atτ ) ∞.

Using this semiclassical form and neglecting the exponentially
small contribution away from the instanton trajectory, we can
estimate the matrix element as

where A ) (Ã + Ã′)/2 and N ) (detAm/Gm(pπ)N)1/2 is the
normalization factor of the semiclassical wave function.16

Equation 22 can be rewritten as a linear integral along the
instanton path. Inserting the identity 1) ∫-∞

∞ dτ δ(τ - τ(q))
into the integrand and changing the order of integration, we
obtain

up to the exponentially small terms. From eq 6, we find∂τ/∂q
) p0/(p0

Tgp0), and the integration in eq 23 gives

Although the above derivations are rather straightforward,
one cannot expect high accuracy from eq 24. To see this, let us
takef(q) ) f0 ) const. In this case, the above estimation gives
I ) ∝f0e-(S0/p)-S1, while the exact result is definitelyI ) 0 as
follows from the definition ofΨ1 andΨ2. In other words, the
loss of exact orthogonality introduces the error comparable to
the matrix element itself. The estimation can be, however,
improved by rewriting eq 20 as

whereqr is an arbitrary reference point. This modification does
not affect the exact value of the matrix element, but in the
semiclassical approximation, it corresponds to the changef(q0-
(τ)) f f(q0(τ)) - f(qr) in the integrand of eq 24. In the present
calculations below, we takeqr ) qb, the symmetric midpoint
of the instanton trajectory, which seems the only reasonable
choice in the present problem.

III. Results

We numerate the atoms in the vinyl radical as shown in Figure
1. The body-fixed frame (BF) of reference is specified by
imposing six conditions on the 15 BF Cartesian coordinatesrn

) ∑i)1
3 xinei (n ) 1, 2, ..., 5). The first three conditions fix the

origin to the center of mass. The other three conditions specify
the orientation of the BF axes (e1,e2,e3) in such a way that the
“tunneling” H5 lies in the (e1,e2) plane ande1 is directed along
the line connecting the two hydrogen atoms in the CH2 group.
By the use of these conditions, the metric tensor for the rotation-

∆S1 ) 2∫-∞

0
(θ(τ) - ωγ) dτ (14)

B( ≡ 1
2

〈Ψ(|G|Ψ(〉 (15)

B( ) M ( m (16)

M ) 1
4

(〈Ψ1|G|Ψ1〉 + 〈Ψ2|G|Ψ2〉) (17)

m )
〈Ψ1|G|Ψ2〉

2
(18)

∆Bk ) 2Xk
TmXk (19)

I ) 〈Ψ1|f|Ψ2〉 (20)

W0′(q) ) ∫τ

∞
p0i(τ′)q̆0

i (τ′) dτ′ + 1
2

Ã′ij(τ)(qi - q0
i (τ))(qj -

q0
j (τ)) + o((∆q2)) (21)

I ) Ne-(S0/p)-S1 ∫ xG dq f(q) exp(- ∆qA∆q
p ) (22)

I ) Ne-(S0/p)-S1 ∫ dτ xG(q0(τ)) f(q0(τ)) ∫ ds δ(∂τ
∂q

s) ×

exp(-
sTA(q0(τ))s

p ) (23)

I ) xdetAm

pGmπ
e-(S0/p)-S1 ∫ dτ x G

detA

(p0
Tgp0)

xp0
TA-1p0

f(q0(τ))

(24)

I ) 〈Ψ1|f - f(qr)|Ψ2〉 (25)
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free (J ) 0) quantum Hamiltonian is constructed in the same
way as in ref 18.

The instanton trajectory was calculated by the iterative
variational method,16 which enables one to incorporate the high-
quality quantum chemical ab initio data directly, that is, without
constructing a global potential energy function.18 The method
finds the instanton path in the analytical form

where the parameterz ∈ [-1:1] plays a role of the coordinate
along the path.16 The first term in eq 26 represents the straight
line connecting the two minima andæn(z) is a set of smooth
basis functions under the conditionæn((1) ) 0. This reduces
the problem to minimization of the classical actionS0({C}) on
the inverted potential as a function ofN × Nb coefficientsCin.
At each step of the iteration, the required ab initio information
includes the values of the potential and its gradient and Hessian
evaluated at some reference points along a trial instanton path.
In the present calculations, we used 12 reference points at each
step. The quantum chemical calculations were performed at the
MP2/6-31G(d,p) level23,24and CCSD(T)/aug-cc-pVTZ level21,25

of electronic structure theory. The gradients and Hessians
required at each point were calculated analytically at the MP2
level and numerically at the CCSD(T) level using the Gaussian
program.26

Table 1 shows a comparison of the normal-mode frequencies
by the two methods (third and fourth columns). The instanton
trajectory was first calculated at the ab initio MP2 level, where
computations are cheap and analytical second derivatives are
available. Starting from the straight line connecting the two
potential minima as the initial trial path, full convergence was
achieved after 10 iterations with 5 stable significant digits in
the classical action guaranteed. By the use of this instanton
trajectory, eq 5 was solved by the standard Runge-Kutta
method and the tunneling splitting of the ground state∆0 was

calculated from eq 8. At the ab initio MP2/6-31G(d,p) level,
we obtained∆0 ) 0.14 cm-1 which is about four times smaller
than the experimental value. This disparity is likely to be related
to the insufficient accuracy of the potential data. In particular,
the potential barrier along the instanton path at the MP2/6-31G-
(d,p) level turns out to be as high as 2249 cm-1. Our experience
shows that one should not generally expect any accurate results
from the simulations on the MP2 PES. At the same time, this
preliminary step is necessary in order to reduce the numerical
efforts at the CCSD(T)/aug-cc-pVTZ level. This is an important
feature of our iterative method which enables us to use the
obtained instanton path as the initial trial guess for the higher
level of computations. The choice of the ab initio scheme at
the preliminary stage is not important, and any numerically
cheap method can be used. Due to the similarity of potential
topology, usage of such a trial path reduces the number of
iterations at the higher level and the calculation can be
completed within a reasonable time effort. In the present case,
only two extra iterations turn out to be enough to obtain three
stable significant digits in the classical action at the CCSD(T)/
aug-cc-pVTZ level of electronic structure calculations. The
convergence of the iterative procedure is illustrated in Figure
2, which shows the projection of the instanton path onto the
(XY) plane for the tunneling hydrogen atom. The paths numer-
ated from 1 to 9 correspond to the successive steps of iteration
using the MP2 ab initio calculations. As one can see from Figure
2, the ninth path and the path at the CCSD(T)/aug-cc-pVTZ
level are essentially the same in shape and the main difference
consists of the shift in the minimum positions. A similar
behavior has been previously observed in malonaldehyde18 and
formic acid dimer.27

Figure 1. Vinyl radical.

q0
i (z,{C}) ) [qm

i + q̃m
i

2
+

qm
i - q̃m

i

2
z] + ∑

n)1

Nb

Cinæn(z) (26)

TABLE 1: Normal Frequencies (in cm-1) and Corresponding Tunneling Splittings for the First Excited States

N type of the motion
ωγ CCSD(T)/
aug-cc-pVTZ

ωγ MP2/
6-31G(d,p)

∆/∆0 CCSD(T)/
aug-cc-pVTZ

∆/∆0 MP2/
6-31G(d,p)

1 C2H1 rocking vibration 711 771. 36.0 41.1
2 wagging (out-of-plane) 813 996 2.20 1.76
3 wagging (out-of-plane) 923 1063 1.28 1.12
4 plane distortion 1062 1129 3.0 2.3
5 H4C3H5 bending 1390 1465 1.7× 10 1.5
6 C2C3 stretching 1632 1863 2× 102 7 × 10
7 H5C3 stretching 3065 3203
8 H1H2H3 assym. bending 3171 3305
9 C2H1 stretching 3238 3360

Figure 2. Iterative calculation of the instanton path. The labeled paths
from 1 to 9 show gradual improvement of the instanton trajectory shape
using the MP2/cc-pVDZ ab initio data. After switching to the CCSD-
(T)/(aug-)cc-pVTZ ab initio method, only two more steps are required
to achieve convergence and obtain the final result.
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At the CCSD(T)/aug-cc-pVTZ level, our theory gives the
ground-state splitting as∆0 ) 0.53 cm-1 which almost perfectly
reproduces the experimental value∆0 ) 0.54 cm-1 (see Table
2). In Table 2, we also show separately the three factorsB, S0,
andS1in eq 8. As one can see, the difference in∆0 between the
two methods comes totally from the principal exponentS0 and
the other two factors are fairly close to each other. This also
confirms the above surmise about the similarity in the potential
topology for different ab initio methods. On the other hand,
the principal exponent is mainly affected by the height of the
potential barrier which in the case of CCSD(T)/aug-cc-pVTZ
reduces to 1770 cm-1. Note that there is almost 200 cm-1

difference from the estimate made by Tanaka et al.15 which is
probably due to the drawback of their 1D model.

It should be mentioned that from the theoretical viewpoint
the accuracy of the instanton method is not very clear, since it
is generally affected by both semiclassical approximation and
the quality of the ab initio potential data. The accuracy of the
instanton theory has been previously checked for simple 1- and
2D model systems. Recently, we have also calculated the tunnel
splitting in spectrum of the realistic nonrotating (J ) 0) HO2

complex and found the agreement with the exact quantum data
within a few percent.16 On the other hand, inaccuracy in the
potential energy surface can erroneously change the order of
magnitude of the tunneling rate and the ab initio level is expected
to be a more crucial factor. The full ab initio convergence test
would imply a direct comparison with the results obtained for
a larger basis for which the CCSD(T) scheme is prohibitively
time-consuming. To provide an additional accuracy check, we
have calculated the transition state energies for different, less
refined schemes as well as the effected barrier height along the
instanton path for CCSD(T)/cc-pVQZ and CCSD(T)/aug-cc-
pVQZ ab initio levels. Table 3 shows that the CCSD(T) barrier
heights are almost the same as the corresponding MP2 ones
with 6-31G(d,p), aug-cc-pVDZ, and aug-cc-pVTZ basis sets.
One can further see that the MP2/aug-cc-pVQZ barrier height

4.98 kcal/mol is very similar to 5.00 kcal/mol for MP2/aug-
cc-pVTZ. This tendency suggests that the CCSD(T)/aug-cc-
pVQZ barrier height is close to the one for CCSD(T)/aug-cc-
pVTZ and this basis is large enough to provide a converged
result. The same conclusion follows from the values of the
effective barrierV0 shown in the last column of Table 3.
AssumingS0 ∝ (V0)1/2, we can estimate the accuracy of the
classical actionδS0 < 0.03 which corresponds∼3% error in
the tunnel splitting.

Using the results obtained at the ab initio CCSD(T)/aug-cc-
pVTZ level, we estimated the splitting of rotational constants
by the method explained at the end of the preceding section.
These results are also presented in Table 2. Diagonalization of
the rotational metrics at the potential minimum gives the average
value of three rotational constants and the corresponding
eigenvectorsXk (see eq 19). Then, the splitting of rotational
constants is estimated from eqs 18-20 and 24. One can see
from Table 2 that the semiclassical estimate reproduces the
rotational constants and their splittings qualitatively but the
absolute values are not very good compared to∆0, as expected.

Finally, we applied the instanton theory of low excited states
to nine possible normal-mode excitations. The results for the
CCSD(T)/aug-cc-pVTZ and MP2/6-31G(d,p) methods are shown
in the fifth and sixth columns of Table 1. In the present case,
the longitudinal normal mode is the lowest one which corre-
sponds to the rocking vibration of the tunneling hydrogen atom.
This has also been checked numerically by calculating the
projection (dq0/dτ)n ≈ 0.99|(dq0/dτ)||n| at the potential mini-
mum wheren is the corresponding direction for the first normal
mode. For this rocking mode excitation, the instanton theory
predicts about 40 times growth of the tunneling splitting and
both of the ab initio methods give similar results. The situation
changes in the case of transversal mode excitation. For low-
energy modes, one observes a moderate growth of the tunnel
splitting but the result is more sensitive to the details of the
potential energy surface compared to the rocking mode. For
the fifth and sixth vibrational mode, one can expect a strong
promotion effect and accurate evaluation of the potential energy
surface is required. A similar effect has been found before in
other systems, and this is explained by different behaviors of
the solution of eq 12 for low and high excitations. In Figure 3,
we depict the effective frequencyθ in eq 12 as a function of
the parameterz. The pointz ) -1 corresponds toτ ) -∞, that
is, the potential minimum. For all the transversal modes, the
effective frequency monotonically decreases, which leads to the
negative exponential factor∆S1 in eq 14. For higher frequency
modes, the curve ofθ is steeper, indicating a strong interaction
with the lower frequency vibrations. In this region, the
exponential factor in eq 13 becomes dominant but more sensitive
to the ab initio method. Finally, for the last three modes (N )
7-9 in Table 2),∆S1 becomes comparable with the principal
exponential factorS0 which indicates a breakdown of the
semiclassical approximation. This is not surprising since the

TABLE 2: Tunneling Splitting of the Ground-State Energy Level and Rotational Constants

rotational constants (MHz)
(average and difference)c

methods
classical barriera

(cm-1)
effective barrierb

(cm-1)
∆0

(cm-1)
B

(cm-1)
S0

(au) S1 A B C

MP2/6-31G(d,p) 2233 2249 0.14 2234 10.65-0.98
CCSD(T)/aug-cc-pVTZ 1761 1770 0.53 2023 9.37-1.11 231 800

227
33 890
10.2

28 500
1.1

experimental 1580d,e 0.54d 237 065d

299d
32 480d

2.74d
28 438d

0.88d

a The difference between the saddle point and the minima (without zero point energy correction).b The barrier height along the instanton path.
c Upper and lower are the average and difference of the constant, respectively.d Reference 15 (K. Tanaka et al.).e One-dimensional model is used.

TABLE 3: Barrier Height in the Vinyl Radical for Various
ab Initio Methods

ab initio method
classical

barrier (cm-1)
classical barrier

(kcal/mol)
effective

barriera (cm-1)

MP2/6-31G(d,p) 2232.8 6.38
MP2/aug-cc-pVDZ 2063.1 5.90
MP2/aug-cc-pVTZ 1749.2 5.00
MP2/aug-cc-pVQZ 1740.2 4.98
CCSD/6-31G(d,p) 2224.2 6.36
CCSD/aug-cc-pVDZ 2086.8 5.97
CCSD/aug-cc-pVTZ 1805.5 5.16
CCSD(T)/6-31G(d,p) 2209.7 6.32
CCSD(T)/aug-cc-pVDZ 2058.5 5.89
CCSD(T)/aug-cc-pVTZ 1761.3 5.04 1773.2
CCSD(T)/cc-pVQZ 1784.7
CCSD(T)/aug-cc-pVQZ 1768.1

a The energy difference between the middle point of the CCSD(T)/
aug-cc-pVTZ instanton path and the minima.
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main assumption of this theory is the localization of the wave
function which remains harmonic in the close vicinity of the
potential minimum. For modesN > 6, the excitation energy
exceeds the potential barrier height and this simple picture
becomes incorrect.

IV. Concluding Remarks

In this work, we applied our instanton theory to the tunneling
splitting in the vinyl radical. The instanton method is a powerful
tool to analyze the hydrogen tunneling in real polyatomic
systems, as it enables one to incorporate high-quality ab initio
potential data with reasonable computational effort. In the
present work, the instanton trajectory was initially found by the
iterative variational method on the MP2/6-31G(d,p) ab initio
potential after 10 iterations with the accuracy of 5 significant
digits in the classical action. This result was further used as a
initial trial path for the high-quality CCSD(T) ab initio method
with a large aug-cc-pVTZ basis set. Thanks to the preliminary
MP2/6-31G(d,p) calculations, only two extra iterations were
enough to achieve the convergence on the CCSD(T)/aug-cc-
pVTZ potential. The final tunneling splitting∆0 ) 0.53 cm-1

is in perfect agreement with the precise millimeter-wave
spectroscopy value∆0 ) 0.54 cm-1 reported by Tanaka et al.15

This confirms the accuracy of the semiclassical instanton method
and also indicates that the presently used CCSD(T)/aug-cc-
pVTZ method is good enough for a theoretical description of
the single hydrogen transfer processes. From the present
calculations, we extracted the effective potential barrier as 1770
cm-1 and also estimated the tunneling splitting of the principal
rotational constants in the radical. The latter are also found to
be close to the experimental data by Tanaka et al.15
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Figure 3. Effective frequencyθ(z) in the integrand of eq 14 for eight
transversal excitations. The steep decrease ofθ(z) in the case of high
excitations indicates a strong interaction with low modes. This leads
to the breakdown of the theory for modes 7-9.
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